Data Scientist, Data Science, Machine Learning, Statistics, Data Science Indonesia, Data Analytics, Data Analysis, Data Analyst, Data, Astronomy, Astronomer, Science, Python, iPython, Jupyter Notebook, R, RStudio, Excel, Coding, Koding, Cara Mengolah Data, Mengolah Data, Olah Data, Programming, Pemrograman, Sains, Teknologi, Ilmu Data, Teknologi Informasi, Tech in Asia, Teknologi, Technology, Sains, Bisnis, Business, Business Analyst, Business Analysis, Social Media Mining, Movie Review, Muhammad Azizul Hakim, Aziz

Berkenalan dengan scikit-learn (Part 4) – Scaling Data dengan MinMaxScaler

“As data scientists, our job is to extract signal from noise.”

~ Daniel Tunkelang

Dari postingan sebelumnya, kita telah mengenal metode scaling data menggunakan standard normal (z-score), dengan menetapkan mean 0 dan standard deviation 1. Metode tersebut bukan metode satu-satunya untuk scaling data.

Pada postingan kali ini, kita akan membahas metode lain untuk scaling data numerik, yaitu Min-Max Scaling, yang sering dikenal juga dengan normalisasi data atau normalization (karena z-score juga sering disebut normalization, maka sering terjadi ambiguitas atau tertukar-tukar :D).

Min-Max Scaling bekerja dengan scaling data/menyesuaikan data dalam rentang/range tertentu (range nilai minimum hingga nilai maksimum), dengan rentang yang biasa digunakan adalah 0 hingga 1. Berikut ini adalah uraian matematisnya:

Data Scientist, Data Science, Machine Learning, Statistics, Data Science Indonesia, Data Analytics, Data Analysis, Data Analyst, Data, Astronomy, Astronomer, Science, Python, iPython, Jupyter Notebook, R, RStudio, Excel, Coding, Koding, Cara Mengolah Data, Mengolah Data, Olah Data, Programming, Pemrograman, Sains, Teknologi, Ilmu Data, Teknologi Informasi, Tech in Asia, Teknologi, Technology, Sains, Bisnis, Business, Business Analyst, Business Analysis, Social Media Mining, Movie Review, Muhammad Azizul Hakim, AzizBaca selebihnya »

Data Scientist, Data Science, Machine Learning, Statistics, Data Science Indonesia, Data Analytics, Data Analysis, Data Analyst, Data, Astronomy, Astronomer, Science, Python, iPython, Jupyter Notebook, R, RStudio, Excel, Coding, Koding, Cara Mengolah Data, Mengolah Data, Olah Data, Programming, Pemrograman, Sains, Teknologi, Ilmu Data, Teknologi Informasi, Tech in Asia, Teknologi, Technology, Sains, Bisnis, Business, Business Analyst, Business Analysis, Social Media Mining, Movie Review, Muhammad Azizul Hakim, Aziz

Berkenalan dengan scikit-learn (Part 3) – Scaling Data Menjadi Standard Normal

“Statistics and numbers are no good unless you have good people to analyse and then interpret their meaning and importance.”

~ Brendan Rodgers

Halo! Di postingan kali ini, kita akan membahas mengenai scaling data, yaitu salah satu metode dalam preprocessing data numerik/data angka nonkategori. Preprocessing data adalah teknik/step dalam data mining atau machine learning, untuk mentransformasikan data mentah menjadi data yang siap dianalisis.

Metode scaling data yang akan kita bahas di sini adalah scaling data menjadi standard normal. Standard normal sendiri merupakan salah satu metode yang paling direkomendasikan dalam teknik scaling data, sekaligus merupakan salah satu distribusi yang paling dikenal dan paling penting dalam statistika.

Pernah mendengar z-score pada statistika? Ya, kita akan mengubah/scaling data kita menjadi z-score.Baca selebihnya »

Berkenalan dengan scikit-learn (Part 1) – Preparations

“If one wants to make a machine mimic the behaviour of the human computer in some complex operation one has to ask him how it is done, and then translate the answer into the form of an instruction table. Constructing instruction tables is usually described as “programming”.”

~ Alan Turing

Scikit-learn adalah library untuk machine learning bagi para pengguna python. Scikit-learn merupakan free software, dan memungkinkan kita melakukan beragam pekerjaan dalam Data Science, seperti regresi (regression), klasifikasi (classification), pengelompokkan/penggugusan (clustering), data preprocessing, dimensionality reduction, dan model selection (pembandingan, validasi, dan pemilihan parameter maupun model).

Pada postingan kali ini, bersama-sama kita akan berkenalan dengan library super keren ini, dan seperti biasa, sambil praktik. Let’s get started! 🙂

Baca selebihnya »